Pediatric Dysphagia: Evidence into Practice

Emily Mayfield, MA, CCC-SLP, BCS-S, IBCLC

Disclosures

- Financial: Mercy Medical Center (employment)
- Non-financial: No relevant disclosures
- Content: Pictures and videos of breastfeeding to follow!

Outline for Today

- Evidence Based Practice
- Anatomy & physiology
- Breastfeeding Basics
- Assessment principles
- Aspiration: current information & theories
- Intervention principles
- Time for questions

Evidence Based Practice: what is it?

- Goal: integrate these three factors to deliver high-quality service
- Dynamic process
- Allows for individualized care

Evidence Based Practice: why do we need it?

- Crucial for the sustainability of our profession
- ASHA Code of Ethics
- And...it’s the best thing for our patients and families!

Evidence Based Practice: What are the (perceived) barriers?

- Time
- Access
- Research reading skills
- ASHA tutorials
- Check out dysphagiagrandrounds.com!
- Resistance to practice changes
- Available research to read
Evidence Based Practice: How do we get there?

• External scientific evidence
• Where to find
 • Free/open access
 • www.doaj.org
 • Possible library access
 • Great analysis of topics via ASHA SIG 13 Perspectives
• How to evaluate
 • ASHA website
 • EBP Tutorials
 • Evidence maps
 • http://www.cebm.net/critical-appraisal/
 • Databases such as PEDro
• Share the load
 • Form journal groups

ASHA Practice Portal

Anatomy

• Vocal fold composition

• Arytenoid length

Newborn & Adult Larynx

http://curriculum.net/SPD/OH/contents/hudbypreview.htm?/3/5/10/08/2099
http://www.entusa.com/larynx_photo.htm

Anatomical Deviations of the Larynx: Laryngomalacia

- Laryngomalacia
 - Softening of laryngeal tissue
 - Typically symptoms present at birth or within first month
 - Inspiratory stridor
 - Difficulty feeding
 - Apnea/cyanosis
- Etiology
 - Anatomic?
 - Inflammatory?
 - Neurologic?

Management
- Depends on severity
- Manage the associated dysphagia
- Typically resolves without intervention before 2 years of age
- Reflux management
- May require surgical intervention if severely impacting breathing/feeding

Laryngeal Cleft

- Congenital malformation
- Abnormal communication between the posterior larynx/trachea and the esophagus

Laryngeal Cleft: Symptoms

- Possible overt symptoms
 - Stridor
 - Hoarse cry
 - Coughing/choking with feedings
 - Cyanosis

- Can be associated with other congenital anomalies or occur in isolation

<table>
<thead>
<tr>
<th>Table 1 Presenting symptoms of patients with type 1 laryngeal cleft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Aspiration with thin liquids</td>
</tr>
<tr>
<td>Recurrent pneumonia</td>
</tr>
<tr>
<td>Chronic cough</td>
</tr>
<tr>
<td>Stridor</td>
</tr>
<tr>
<td>Nipple</td>
</tr>
</tbody>
</table>

The number of patients and the percentage are shown.

Laryngeal Cleft: Diagnosis

- Multi-disciplinary
 - Collaboration amongst multiple professionals
 - May include chest CT, broncho-alveolar lavage
 - Referral to ENT
 - Flexible laryngoscopy
 - Direct/rigid scope in OR with palpation of inter-arytenoid space

Chien, et al., 2006; Rahbar et al., 2006; Williams et al., 2011; Neubauer, Rosenthal, Wooten III, Zdanski, & Drake, 2013

Laryngeal Cleft: Management

- Conservative
 - Diet modification/swallow maneuvers based on swallow study
 - On-going assessment to try to wean
 - Reflux management
 - “Wait and see”

- Surgical
 - Open or endoscopic
 - Gel injection or suture repair

Laryngeal Cleft: Surgical Management

- Injection laryngoplasty
- Suture repair

WARNING: Intra-operative video, there's blood!
Post-operative Dysphagia Management

- Typically wait at least 6-8 weeks post repair for repeat swallow study
- Some advocate for clinical weaning/monitoring with repeat VFSS only as necessary if pt had no co-morbidities and symptomatic aspiration
 - (Wentland et al., 2016; Hersh et al., 2016)
- Dysphagia may persist post-operatively
 - Neurodevelopmental compromise strongest predictor of continued need for thickened liquids or NPO (Osborn et al., 2014)

Swallow physiology

- Pediatrics: Phase model
 - Anticipatory Phase
 - Oral Preparatory Phase
 - Oral Transit Phase
 - Pharyngeal Phase
 - Esophageal Phase*
 - Leopold & Kagel, 1997; Logemann 1998
- Useful for organizing thoughts & guiding differential diagnosis
 - Infants: Add layer of suck/swallow/breathe

Suck/Swallow/Breathe Physiology: Sucking

- Efficient sucking is comprised of both suction & expression (compression)
 - (Lau & Kusnietczyk 2001; Cannon et al 2013; Elad et al 2014; Geddes, Chadwick, Kent, Garbin, & Hartmann, 2010)

Suck/Swallow/Breathe Physiology: Sucking

- Breastfeeding vs bottle feeding
 - Muscle activation
 - Bottle feeding: ↑ buccinators & orbicularis oris
 - Breastfeeding: ↑ Mentalis, masseter, temporalis, M Pterygoid

*Geddes, Chadwick, Kent, Garbin, & Hartmann, 2010
Ardran, Kenis, & Lind, 1958; Sakulidis et al., 2012; Geddes et al, 2008; Gomes 1996; Inoue, 1995; Sakashita 1996; Nyvquist 2001
Suck/Swallow/Breathe Physiology: *Sucking*

- **Sucking**
 - Expression develops before consistent use of suction (Lau et al, 2000)

Suck/Swallow/Breathe Physiology: *Swallowing*

- **Swallowing**
 - Tongue base pressure (Rommel 2006)
 - Pharyngeal clearance
 - Shortening & contraction present (Rommel 2006, 2011)
 - Adequate valving needed
 - Reduced pharyngeal peak pressure above the UES which disappears with increasing age (Rommel 2011)
 - Airway protection**
 - Pharyngo-esophageal sphincter opening
 - UES relaxation found to be less complete at time of maximum proximal pharyngeal contraction, improved with age (Rommel 2011)
 - UES resting tone increases with age (Jadcherla 2005)

- **Esophageal motility**
 - Esophageal function: Peristalsis & aerodigestive protection
 - Amplitude of esophageal peristalsis increases with maturation (Gupta 2009)

Airway Protection

- Hyolaryngeal positioning
- Vestibule closure
- Epiglottic inversion?

Epiglottic Inversion

- Rommel 2002, Rommel 2006
 - No consistent epiglottic tilting until after 5 years of age
 - Epiglottis moved an average 34°, range of 9°-49°
 - Mean age of participants was 18 months, range 2-30 months
- Gosa 2012 & Gosa, Suiter, & Kahane 2014
 - Absence of full epiglottic tilting during swallows of infants (age range 1 week-3 months)
 - Anterior movement of arytenoids was sufficient for laryngeal closure

Videoswallow: Epiglottic Inversion?
Suck/Swallow/Breathe Physiology: Breathing

- Swallow Apnea
 - Nasal airflow maintained during sucking, swallow apnea required during swallow

Suck/Swallow/Breathe Coordination

- S/S/B coordination requires complex neural control
- Respiratory phase coordination of swallow apnea
 - Term infants: E-I then I-E most dominant (Kelly et al, 2007)

Suck/Swallow/Breathe Physiology: Breathing

- Healthy preterm infants:
 - I-I and P most dominant (Lau et al, 2003), difference not significant when taking 6-8 oral feedings
 - Pattern matures to I-E dominant by 35 weeks in healthy preterms (Mizuno & Ueda, 2003)
- Preterm infants with lung disease:
 - Worsened with time, 32.6% E-I (Gewolb & Vice, 2006)
 - Highly disorganized (Mizuno et al, 2007)

Breastfeeding: Anatomy

Credit on slides in this section shared with:
Colleen Gould, MS, CCC-CLP, IBCLC
Jenny Walters, MPH, IBCLC, LLLL
Breastfeeding: Flow rate

- Flow rate: baby driven vs passive flow
 - Bottle feeding
 - Respond to more of a passive flow
 - Breastfeeding
 - Milk ejection reflex
 - Milk flow rate likely to vary by time of day
 - Milk composition may vary
 - Dependent upon supply and inherent flow characteristics

The Basics: Positioning

- Basic principles of positioning for preterm infants
 - Baby facing directly at the breast, close to mother's abdomen
 - Provide breast support and wedging
 - Keep chin off chest
 - Provide stability/bracing to feet

<table>
<thead>
<tr>
<th>Position</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cradle hold</td>
<td>"Natural" position that mothers recognize</td>
<td>Less head/neck control. Difficult to maintain positioning</td>
</tr>
<tr>
<td>Cross Cradle hold</td>
<td>Easy to simulate with bottles.</td>
<td>May not feel "natural".</td>
</tr>
<tr>
<td>"Laid-back"/prone</td>
<td>Flow rate management.</td>
<td>Can be difficult to manage in NICU.</td>
</tr>
</tbody>
</table>

Positioning for preterm infants:
- Baby facing directly at the breast, close to mother’s abdomen.
- Provide breast support and wedging.
- Keep chin off chest.
- Provide stability/bracing to feet.

The Basics: Positioning

- Basic principles of positioning for preterm infants
 - Baby facing directly at the breast, close to mother's abdomen
 - Provide breast support and wedging
 - Keep chin off chest
 - Provide stability/bracing to feet

<table>
<thead>
<tr>
<th>Position</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cradle hold</td>
<td>"Natural" position that mothers recognize</td>
<td>Less head/neck control. Difficult to maintain positioning</td>
</tr>
<tr>
<td>Cross Cradle hold</td>
<td>Easy to simulate with bottles.</td>
<td>May not feel "natural".</td>
</tr>
<tr>
<td>"Laid-back"/prone</td>
<td>Flow rate management.</td>
<td>Can be difficult to manage in NICU.</td>
</tr>
</tbody>
</table>

Slide credit shared with: Colleen Gould, MS, CCC-SLP; Jenny Walters, MPH, BOC-L, LLLL, ASHA 2012
The Basics: Positioning

The Basics: Latch

• Latch
 • Characteristics
 • Deep positioning
 • Comfort for mother
 • Strategies
 • Breast wedging
 • Asymmetric latch
 • Nipple shield

The Basics: Latch

• Breast wedging to facilitate a deeper latch

The Basics: Latch

• Silicone nipple shield
 • Ultrathin
 • Come in a variety of brands, shapes, sizes
 • Can help sustain latch and facilitate milk transfer
 • Preterm population: Meier et al 2000

Questions?
Clinical Swallow Evaluation

- Evolving utility with adult populations
 - No empirical evidence we can do this reliably
- Judging HLE from our fingers
- Interpreting presence/absence of “wet” vocal quality
 - Less than 50% reliable in identifying aspirators on VFSS based on wet vocal quality (Groves-Wright et al., 2010)
- Cough after swallow
 - Smith-Hammond et al 2009: clinical signs <60% sensitivity for aspiration
 - Daniels 1998: silent aspiration in 2/3 stroke patients

Silent aspiration in pediatrics: what do we know?

- Children with neurologic impairment predisposed to silent aspiration
- Silent aspiration described in both neurologic & non-neurologic populations

Goals of Assessment

- Overall goals: minimize risk, maximize health, support development, support family goals
- Key= Differential Diagnosis
 - Key factor in pediatric evaluation
 - What are contributing factors?
 - What more information do you need? (e.g., referrals)
 - Immature vs. abnormal patterns?
 - Sensory vs. Motor?
 - Sensory issue vs. behavior?
 - Motor weakness vs incoordination vs abnormal tone?
 - Structural vs neurologic?

Pediatric Clinical Swallow Evaluations

- Likely components
 - Detailed history (feeding, medical, developmental)
 - Cranial nerve exam/oral assessment
 - Reflex exam (as appropriate)
 - Assessment of positioning/postural stability
 - Sensory responses
 - Behavior/state control
 - Feeding/swallowing assessment (as appropriate)
Additional Factors to Consider

- Age/developmental stage
- Experience
- Diagnosis
- Status of dysphagia: acute or chronic?
- Setting

Clinical Swallow Examination: Special Considerations for Pediatrics

- Developing system
 - 0-3 year age range is highly heterogeneous (Delaney & Rudolph 2012)
 - Interpreting signs/symptoms in the context of disrupted development
- Developing lungs
- Nutrition is paramount
- Lifetime potential of radiation exposure

Clinical Swallow Evaluation: Summary of Utility

- Acknowledge limitations but also benefits
- Key component: dysphagia assessment involves more than just aspiration risk

Formal Assessment Tools

Videofluoroscopic Swallow Studies (VFSS)

- General procedure
- Goals of the exam
 - Clinical question
 - Dysphagia ≠ aspiration
 - Pathophysiology detailed
 - Compensatory strategies/utensils tested
 - Part of the overall picture, but is not the whole answer

Key points to consider (Arvedson & Lefton-Greif, 2017)
- Increased concern of radiation exposure with infants/children
- Justification
 - Adequate knowledge to know risks vs benefits
 - (Huda, 2009)

Optimization
- ALARA (As Low As Reasonably Achievable)
- Plan exam to limit fluoro time needed to answer questions
- Number of swallows needed? Plan for fatigue?
- Pulse rate: 30 fps (Bonilha et al., 2013)

Temporal Measures: Normal
- Preliminary Temporal Measurement Analysis of Normal Oropharyngeal Swallowing in Infants and Young Children
 - Weckmueller, Julia, Easterling, Caryn, Arvedson, Joan
 - Dysphagia (2011) 26:135–143
- Retrospective review of 15 normal swallow studies
- Separated into 3 age categories
- Important findings re: initial look at “normal”
- Most clinically applicable findings:
 - Bolus at or fully contained in the valleculae at the onset of laryngeal closure
 - For all 15 subjects, laryngeal closure occurred after the head of the bolus passed the tongue base
Penetration

- Retrospective review of videoswallow studies
- N=125, aged 7 days to 19 years
- Significant increase in incidence of aspiration in children w/deep penetration (85%)

Deep Laryngeal Penetration as a Predictor of Aspiration.

Barium Use in Pediatric Studies

- Barium liquids were more viscous, more dense, & had higher yield stress than mealtime liquids
- No comparability between barium and formula mixtures
- Gosa & Dodrill (2016)
- Frazier et al. (2016)
 - Several infant formulas stayed within NDD thin range with 20% w/v E-Z Paque barium added
 - Specialty formulas acted differently: Enfamil AR 20 cal got thinner with addition of barium, the 24 cal Enfamil AR got thicker

FEES: Fiberoptic Endoscopic Evaluation of Swallowing

Indications
- Question aspiration of secretions
- Patients who are NPO or minimal PO intake
- Question airway protection specifically
- Need more information after a videoswallow
- Unable to adequately simulate feeding position with fluoroscopy

In the Literature
- Description of procedure with pediatric patients: Willing 1995
- Clinical utility: Hartnick et al 2000
- Good correlation with VFSS: Madden et al 2000, Leder & Karas 2000
- Sensory thresholds correlated positively with pooled secretions, penetration, & aspiration: Link et al 2000

Pros
- Better simulates feeding environment & experience
- Clear view of structures
- No barium or radiation
- Assess caregiver interventions
- Assess during breastfeeding
- No set time constraints
- Promote family involvement

Cons
- Possible discomfort to patient
- Specialized training required
- No view of esophageal phase
- Chain swallows in infants can be difficult to interpret
- White out during the swallow
- Equipment cost

In the Literature
- Adapted from Willing, CE 2013
- Adapted from Link et al 2000
- Adapted from Reynolds & Sturdivant, 2014
FEES in the NICU
- Safety/tolerance
 - No major complications occurred when used in NICU infants under the age of 3 months; stable physiologic parameters (Willette et al, 2016) (Suterwala et al, 2017)
- Breastfeeding assessment (Willette et al, 2016)
 - Used safely and effectively during breastfeeding assessments
 - Not able to establish reliability due to lack of other instrumental option
- Reliability (Suterwala et al, 2017)
 - Good inter-rater agreement for penetration with VFSS (87%) and FEES (80%)
 - Good inter-rater agreement for aspiration with VFSS (90%) and FEES (80%)

Decision Making: Aspiration
- Response to aspiration
 - Protection: mechano & chemo receptors on surface of pharynx, epiglottis, arytenoid cartilages, vocal folds (Tutor & Gosa, 2012)
 - Protective response varies by age
 - Preterm infants: apnea (prolonged), bradycardia, and reduced respiratory efforts (Thach, 2001; Miller 1952)
 - Term infants: brief cessation in respiration and initiated 1-2 swallows (Thach, 2001)
 - Adults: Cough, swallow (Thach, 2007)

Health Impact of Aspiration
- Short term
 - Apnea/bradycardia/desats?
 - Could these lead to longer term growth issues?
 - (Wang, 2010)
- Long term
 - Evidence of pulmonary symptoms & CXR finding?
 - (Mercado-Deane et al, 2001)
 - Odds ratio of PNA
 - Taniguchi & Moyer, 1994
 - Lung damage via high resolution chest CT
 - Pezzine et al 2012***, Bosch et al 2006***
 - High prevalence of bronchiectasis in children with chronic pulmonary aspiration, seen as early as 8 months

Recommendations: Factors to Consider
- Patient characteristics
 - Age
 - Environment
 - Overall health status
 - Comorbidities, ability to fight infection
 - Capability of following through with plan
 - Need for adequate nutrition

Recommendations: Factors to Consider

- Dysphagia Characteristics
 - Frequency and amount of aspiration
 - Chronicity of the problem
 - What is aspirated
 - Liquids only? Solids?
 - Source of aspiration
 - Likely to improve with time? Structural?
- Support for pt/family goals in the context of the disease trajectory (Pollens 2004)

Recommendations?

- What to do?
 - Individualized, team-based approach, based on each patient’s medical history, presentation, & goals of care

Flow Rate: Bottle Feeding

- Rationale:
 - Preterm infants more efficient with more controlled flow rate (Chang 2007, Lau et al 1997, Lau & Schanler 2000)
- Bottle characteristics (Ross & Furham, 2015)
 - Hole size (Jackman, 2013; Pados, Park, Thoyre, Estrem, & Nix, 2015),
 - Pliability (Zimmerman & Barkow, 2008)
 - Shape and size (Eishima, 1991; Segami 2013)
 - Air exchange (Lau 2015)
 - Hydrostatic pressure (Lau & Schanler, 2000)

Milk Flow Rates From Bottle Nipples Used for Feeding Infants Who Are Hospitalized.

Milk Flow Rates From Bottle Nipples Used for Feeding Infants Who Are Hospitalized.

Flow Rate: Bottle Feeding

- Rationale:
 - Preterm infants more efficient with more controlled flow rate (Chang 2007, Lau et al 1997, Lau & Schanler 2000)
 - Bottle characteristics (Ross & Furham, 2015)
 - Hole size (Jackman, 2013; Pados, Park, Thoyre, Estrem, & Nix, 2015),
 - Pliability (Zimmerman & Barlow, 2008)
 - Shape and size (Eishima, 1991; Segami 2013)
 - Air exchange (Lau 2015)
 - Hydrostatic pressure (Lau & Schanler, 2000)

Suck/Swallow/Breathe Coordination

- External pacing/co-regulated feeding
 - Rationale: responding to cues from the infant that intervention/increased support is needed to maintain coordinated breathing/swallowing, postural stability, & state regulation (Shaker, 2013)
 - Articles of interest: (Shaker, 2017) x2
 - Co-regulated feeding resulted in: less oxygen variability, decline, and time spent in desat state, less heart rate variation & decline, less behavioral dysregulation, better fluid management, decreased work of breathing
 - Law-Morstatt et al, 2003
 - Pacin resulted in: statistically significant decrease in bradycardia, more efficient sucking pattern

Flow Rate: Breastfeeding

- Prone positioning
- Pump before feeding
- Nipple shield
- Scissor hold
- Flat hand/heel pressure (Dr Carol Chamblin)

Positioning

Elevated side-lying (ESL)

Why would this work?
- Possible decreased work of breathing due to less anti-gravity movement required (Vanderghem, Beardsmore, & Silverman, 1983)
- Can help to decrease gravity effect on bolus (toward pharynx)
- Simulates cross-cradle breastfeeding position
- Clinical expertise: does this work? My experience is yes.

Positioning

- Side-lying position
 - Clark et al 2007
 - Trend toward greater physiologic stability in ESL position (increased SpO2, more stable heart rate)
 - Dawson et al, 2013
 - Little difference found in infants’ physiologic stability between the two feeding positions
 - Trend toward infants consuming a smaller proportion of their feed in cradle hold
Positioning
• Lau, 2013
 • No difference in time to attain full oral feeding between cradle, side-lying, and upright positions
• Park, Thayre, Knafl, Hodges, & Nix, 2014
 • Elevated side-lying: Significantly less variation in HR, less severe & fewer decreases in HR, RR closer to pre-feeding state, shorter & more regular intervals between breaths, shorter & fewer feeding-related apneic events

Intervention: Thickening
• Gosa, Schooling, Coleman 2011
 • Evidence Based Systematic Review
 • Currently we have an insufficient evidence base for the use of this intervention
 • (Madhoun, Siler-Wurst, Sitaram, & Jadhrele, 2015)
 • Survey
 • Variability of thickening prescriptions, thickening agents, recipes

Intervention: Thickening
• Possible benefits of thickened liquids
 • Slower moving liquids may give increased sensory information and allow for greater oral motor control (Goldfield, Smith, Buonomo, Perez, & Larson, 2013)
 • Slower flowing to improve timing of airway protection (Rempel & Moussavi 2005)
 • Possibly decrease/eliminate aspiration (Mercado-Deane et al 2001; Gosa, Suiter, Kahane, 2011)
 • After temporal measures (Gosa, Suiter, Kahane, 2011)
 • Clinical experience?

Intervention: Thickening
• Possible downsides/risks
 • Malnutrition/dehydration?
 • Evidence exists that thickening does not affect bioavailability of water in healthy controls (Hill et al 2010, Sharpe et al 2007)
 • May impact efficiency, and therefore intake/weight gain
 • Gut health?
 • Woods 2012 detailed development of necrotizing enterocolitis in premature infants using Simply Thicker
 • Constipation
 • Inconsistency of viscosity/recipes
 • Viscosities vary by time, temperature, etc (Garcia et al 2005, 2008) (Gosa & Dodrill, 2016)
 • Even experienced SLP’s not able to reproduce consistent nectar or honey (Glassburn & Dean 1998)
 • Possible cessation of breastmilk

Thickening: Factors to Consider
• What type of thickener to use
 • Rice/oatmeal, starch, gum, Gelmix, fortified specialty formula
• Weaning from thickened liquids
 • Based on individual swallow physiology
 • May repeat instrumental exam or wean clinically and closely monitor
 • Progressive weaning of thickening

Thickening: Fortified Formula
• Rationale:
 • Many preterm infants need higher caloric density and added calcium/phosphorus
 • Clinicians have long noted the perception of increased thickness of anti-reflux formula (Enfamil AR), approximating half strength nectar
 • Anecdotally, NICU clinicians report that frequently half strength nectar is sufficient for swallowing safety with use of slow flow nipples (Dr Brown’s P and Ultra P)
 • Possible option:
 • Enfamil AR fortified to 24 cal
Viscosity Measurements of Fortified Infant Formulas
Mayfield, Woods, Gould, Walters, Bullock
2014 ASHA Convention

Direct Muscle Intervention
- Motor training principles
 - Robbins et al., 2008 principles of neuroplasticity
 - Use it or lose it
 - Use it and improve it
 - Plasticity is experience specific
 - Repetition matters
 - Intensity matters
 - Age matters
 - Time matters
 - Salience matters
 - Transference
 - Interference

Direct Muscle Intervention
- Oral phase interventions for preterm infants
 - 3 systematic reviews
 - (Arvedson, Clark, Lazarus, Schooling, & Frymark, 2010)
 - (Lima, Côrtes, Bouzada, & Friche, 2015)
 - (Tian et al., 2015)
 - Conclusion from 2015 studies: oral phase interventions may shorten the transition time to full oral feeding

Direct Muscle Intervention
- Oral phase interventions for older infants/children
 - One systematic review
 - (Arvedson, Clark, Lazarus, Schooling, & Frymark, 2010)
 - Conclusion: insufficient evidence for OR against
 - (Gosa & Dodrill, 2017)

Direct Muscle Intervention
- Pharyngeal phase intervention
 - Neuro Muscular Electrical Stimulation (Christiaanse et al., 2011)
 - Conclusion: NMES did not improve swallow function
 - Two systematic reviews
 - (Morgan, Dodrill, & Ward, 2012)
 - Insufficient evidence to support or refute
 - (Harding & Cockerill, 2015)
 - Lack of evidence to support or refute

Questions?